Восемь вопросов к искусственному интеллекту
Словосочетания «нейронные сети», «машинное обучение», «искусственный интеллект» звучат все чаще и чаще. Их произносят Владимир Путин и Максим Кац. Профессию специалиста по анализу данных называют одной из самых востребованных сейчас и в ближайшем будущем. Но вокруг темы искусственного интеллекта существует большое количество мифов и заблуждений. Ответы на наиболее популярные вопросы об искусственном интеллекте (ИИ) VTimes дает Дмитрий Ветров, профессор-исследователь НИУ ВШЭ.
Грозит ли нам восстание машин под предводительством ИИ?
Это одно из самых больших и вредных заблуждений. Технологии ИИ предназначены для решения конкретных интеллектуальных задач. Для каждой задачи используется отдельная модель. Стратегическая цель — создание так называемого сильного ИИ: универсальной обучаемой системы, способной постоянно учиться решать все новые и новые разнообразные типы задач, но не забывающей, как решать старые задачи.
Такая система будет в состоянии пройти тест Тьюринга, то есть при общении с ней человек не сможет отличить, говорит он с компьютером или с человеком. (Пока это за пределами технологических возможностей.) Можно предположить, что с внедрением квантовых компьютеров удастся подступиться к созданию сильного ИИ. Но даже когда он будет создан, это будет всего лишь помощник (или, если угодно, раб) человека, не способный к самостоятельному целеполаганию. Для последнего необходим не искусственный интеллект, а искусственное сознание, когда система осознает себя как мыслящее существо и у нее могут появиться стремления к самосохранению и самовоспроизводству. Ничего даже близко похожего на искусственное сознание мы не наблюдаем, и вряд ли нам это грозит в обозримой перспективе. Чтобы понять, почему это так, необходимо разобраться, что же на самом деле происходит при обучении компьютера.
Что такое технологии ИИ?
С момента появления первых компьютеров они рассматривались как программируемые вычислительные устройства, способные выполнять миллиарды простых арифметических и логических операций по заранее заданному алгоритму. Это позволило решить большое количество важных задач, в первую очередь связанных с расчетами в сложных математических моделях различных процессов, которые описывались дифференциальными уравнениями.
По сути, компьютер использовался для задач, алгоритм решения которых был известен человеку. И только в последние годы человечество стало осознавать, что компьютер способен на много большее — он может находить способ решать задачи, для которых алгоритма решения нет или он не известен человеку. Это стало возможным благодаря развитию технологий машинного обучения, которые сейчас все чаще называют искусственным интеллектом
Несколько упрощая, процесс обучения выглядит следующим образом. Имеется большое число однотипных задач, в которых известно условие и известен правильный ответ или один из возможных ответов. Примером может быть задача машинного перевода, в которой условием является фраза на одном языке, а ответом — ее перевод на другой язык. Модель машинного обучения, например глубинная нейронная сеть, работает по принципу черного ящика, который принимает на вход условие задачи и выдает сигнал в пространстве ответов. Применительно к машинному переводу это будет произвольный текст на втором языке. У черного ящика есть дополнительные параметры. Их значения определяют, как входной сигнал будет преобразовываться в выходной. Процесс обучения черного ящика заключается в поиске таких значений параметров, при котором для заданных входов он выдает сигнал, близкий к желаемым выходам. Настроив параметры так, что для всех задач с известным ответом черный ящик выдает желаемые ответы или близкие к ним, можно рассчитывать, что и для новых задач того же типа черный ящик будет выдавать разумные ответы. Разумеется, в общем случае гарантировать этого нельзя, но для многих популярных моделей машинного обучения действительно удается настроить модель так, что она успешно справляется с решением новых задач того же типа, ответов на которые модель не видела в ходе своего обучения. Из этого примера становится понятно, что существует несколько принципиальных ограничений для технологии машинного обучения. Во-первых, черный ящик должен быть достаточно гибким, что напрямую зависит от числа настраиваемых в ходе обучения параметров. Современные модели включают в себя десятки миллионов параметров, сложным образом определяющих, как входы преобразуются в выходы. Во-вторых, итоговое качество напрямую зависит от числа задач, которые демонстрировались модели в ходе обучения. Поэтому наилучшие результаты ИИ демонстрирует в тех областях, в которых удается накопить огромные объемы данных с миллиардами однотипных задач. В-третьих, ответы задачи должны объективно зависеть от условий. Методы машинного обучения бессмысленно применять, если между входами и выходами нет никакой семантической связи.
В каких сферах ИИ применяется уже сейчас?
Одним из удивительных результатов последних лет стало осознание того, что модели ИИ можно использовать для очень широкого спектра задач, для которых еще 20 лет назад считалось, что они не могут быть решены с помощью компьютера и способность к их решению является атрибутом высшей нервной деятельности. Например, ИИ способен рисовать картины, поддерживать беседу, управлять автомобилем и многое другое. Уже сейчас ИИ активно применяется в системах распознавания печатных и рукописных текстов, распознавании и синтезе речи, интернет-поиске, рекомендательных системах. Из последних достижений можно отметить решение задачи прогноза третичной структуры белков, которая являлась одной из сложнейших и важнейших задач в биологии и которая была решена специалистами компании DeepMind осенью 2020 г.
Не начнется ли деградация людей, если мы научим компьютер думать за нас?
Людям всегда будет, о чем задуматься.
Технологии ИИ — это всего лишь инструменты, заточенные под решение конкретных (пусть и весьма сложных) задач
Подобно тому, как люди физически не ослабли после появления станков и машин, способных заменить человека в физическом труде, появление технологий, способных решить за нас часть когнитивных задач, не приведет к тому, что люди станут меньше работать головой. Просто они начнут делать это для удовольствия, а не для того, что прокормить себя. Наконец, вопросы этики и морали, смысла жизни точно останутся прерогативой человека.
Каковы социальные последствия массового внедрения технологий ИИ?
Не будет преувеличением сказать, что повсеместное внедрение технологий ИИ приведет к серьезным изменениям в стиле и уровне жизни людей. Такие же драматические изменения происходили при повсеместном внедрении паровой машины, развитии электроэнергетики, распространении автомобилей. Человечество перейдет от массового производства одинаковых товаров и услуг к персонифицированным сервисам, многие отрасли народного хозяйства, которые невозможно сейчас представить без людей, будут полностью или частично автоматизированы. В течение пары десятилетий уйдут в прошлое профессии оператора колл-центра, водителя, синхронного переводчика, пилота самолета и др. У большинства людей появятся виртуальные или роботизированные персональные помощники, которые будут помогать в домашнем хозяйстве, следить за состоянием здоровья, планировать досуг. Конечно, часть нынешних профессий отомрет, но бояться этого не надо. Человечество многократно проходило через эпохи технологических трансформаций. На смену отмирающим профессиям придут другие, в которых люди смогут лучше себя реализовать, например киберспорт, стриминг, видеоблогерство и др.
Вам также может быть интересно:
В НИУ ВШЭ разработан инструмент для контроля ИИ-технологий в медицине
Группа исследователей из Центра искусственного интеллекта НИУ ВШЭ разработала индекс для определения уровня этичности систем искусственного интеллекта (ИИ) в медицине. Инструмент предназначен для минимизации потенциальных рисков, обеспечения безопасной разработки и внедрения ИИ-технологий в медицинскую практику.
Драйвер прогресса и статья доходов: роль университетов в трансфере технологий
В современном мире необходим эффективный трансфер социально-экономических и гуманитарных знаний в реальный сектор экономики и госуправление. Решающую роль в этом играют университеты. У них есть возможность объединять различные коллективы и в партнерстве с государством и бизнесом разрабатывать и совершенствовать передовые технологии.
ИНФОТЕХ-2024: «понять перспективы и ограничения использования ИИ в образовании»
В конце октября в рамках XVII Тюменского цифрового форума информационных технологий «ИНФОТЕХ-2024» прошел круглый стол «Эксперименты с ИИ в образовании». Эксперты Высшей школы экономики, Московского городского педагогического университета, Уральского федерального университета и Тюменского государственного университета обсудили практический опыт разработки и внедрения технологий ИИ в образовательный процесс, обозначили основные вызовы, связанные с быстрым развитием образовательных решений на базе ИИ.
Fall into ML 2024: взгляд в будущее машинного обучения
25–26 октября в Москве состоялась конференция Fall into ML, организованная Институтом искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ совместно с Центром ИИ при поддержке титульного партнера — Сбера. На протяжении двух дней ведущие специалисты в области искусственного интеллекта обсуждали перспективы развития фундаментальных технологий ИИ.
ВШЭ и «Яндекс» представили доклад об интеграции искусственного интеллекта в высшее образование
Высшая школа экономики и «Яндекс Образование» подготовили совместный доклад «Искусственный интеллект в образовании». В нем проанализированы ведущие мировые практики, раскрывающие потенциал технологий искусственного интеллекта (ИИ) в образовательной сфере. Доклад представляет собой карту с кейсами университетов разных стран, уже сегодня применяющих ИИ. Цель проекта — помочь российским вузам внедрять ИИ, опираясь на опыт других университетов.
Практика лицензирования разработок НИУ ВШЭ отмечена премией в области корпоративных инноваций GIA
На церемонии вручения премии GIA совместный проект Центра искусственного интеллекта НИУ ВШЭ и АО «Новое сервисное бюро» получил награду в номинации «Трансфер технологий». Это стало плодом интенсивной работы университетского Центра трансфера технологий и научных сотрудников вместе с индустриальным партнером.
Онлайн-юрист, чат-ассистент и аватар профессора: как ученые Вышки применяют ИИ-технологии
Молодые ученые Вышки представили собственные проекты на Объединенном научном семинаре стратегического проекта «ИИ-технологии для человека» (реализуется в рамках программы «Приоритет-2030»). Решения, предложенные исследователями на базе ИИ-алгоритмов, будут полезны для развития гостиничного бизнеса, выявления манипуляций с эмпирическими данными в научных статьях, автоматизации создания юридических документов, а также во многих других сферах деятельности.
Эксперты НИУ ВШЭ исследовали, как ведется подготовка специалистов в области ИИ
Институт статистических исследований и экономики знаний НИУ ВШЭ представил доклад, подготовленный на основе результатов специализированного обследования образовательных организаций высшего образования. Целью впервые проведенной работы стало выявление масштабов и условий обучения технологиям искусственного интеллекта в рамках образовательных программ высшего образования и дополнительных профессиональных программ в вузовском секторе.
«Нам удалось провести настоящий хакатон, когда нет заранее понятного пайплайна, как получить решение»
С 13 по 20 октября в НИУ ВШЭ прошел хакатон “HSE AI Assistant Hack: Python”, организованный факультетом компьютерных наук и Центром искусственного интеллекта ВШЭ. За призовые места боролись 89 студенческих команд из ведущих вузов страны.
Ученые Вышки представили разработки, связанные с применением ИИ в медицине
Искусственный интеллект не заменит врача, но может стать ему отличным помощником. При этом здравоохранение нуждается в высокотехнологичных продуктах, которые способны быстро анализировать и контролировать состояние пациентов. Ученые Вышки применили ИИ для предоперационного планирования и постоперационной оценки результатов в спинальной хирургии и разработали автоматическую интеллектуальную систему для оценки биомеханики рук и ног.